COMBINATORICA Bolyai Society – Springer-Verlag

LINEAR k-BLOCKING SETS

GUGLIELMO LUNARDON*

Received December 19, 1997 Revised September 19, 2000

We point out the relationship between normal spreads and the linear k-blocking sets introduced in [9]. We give a characterisation of linear k-blocking sets proving that the projections and the embeddings of a PG(kt,q) in $PG(r-1,q^t)$ are linear k-blocking sets of $PG(r-1,q^t)$. Finally, we construct some new examples.

1. Introduction

Denote by k a positive integer. A k-blocking set in the finite projective space $PG(r-1,s), r \ge k+2$, is a set B of points such that any (r-k-1)-dimensional subspace contains a point of B and no k-dimensional subspace is contained in B. When k=r-2, we simply say that B is a blocking set. If for each point x of B the set $B\setminus\{x\}$ is not a k-blocking set (i.e., if there is a (r-k-1)-dimensional subspace of PG(r-1,s) intersecting B in exactly the point x), we say that B is minimal. It is proved in [2] that $|B| \ge s^k + s^{k-1} + \dots + s + 1 + s^{k-1} \sqrt{s}$. The smallest k-blocking sets in PG(r-1,s), s>2, are the cones $B(U,B_0)$ with vertex a (k-2)-dimensional subspace U of PG(r-1,s), and with base a blocking set B_0 of the smallest possible size in a plane E of PG(r-1,s) disjoint from E0 (see [6]). If E1 is a Baer-subplane of E2 and E3 is a Baer-subplane of E4 and E4. We remark that all the abovementioned E5 blocking sets are blocking sets of a E6 in the subspace and they contain E7 contains subspaces.

Mathematics Subject Classification (2000): 51E20; 51E21, 51E22

^{*} Partially supported by Italian M.U.R.S.T.

A minimal blocking set B of PG(2,s) has order $|B| = s + N \ge s + |B \cap l|$ where l is a line of the plane. If $N < \frac{s+3}{2}$, we call B a small minimal blocking set. If there is a line l containing exactly N points of B, we call l a $R\acute{e}dei$ line and B is said to be a $R\acute{e}dei$ minimal blocking set. The reader can see [13] for a detailed exposition of the topic. Examples of minimal blocking sets of PG(2,s) ($s=q^t$) can be constructed in the following way. Let $f:GF(s)\mapsto GF(s)$ be a GF(q)-linear map. The set $B_f=R\cup D_R$, where $R=\{(a,f(a),1) \mid a\in GF(s)\}$ and $D_R=\{(a,f(a),0) \mid a\in GF(s)\}$, is a Rédei minimal blocking set of PG(2,s) containing q^t+N points (see [3] or [13]).

Let $B = R \cup D_R$ be a Rédei minimal blocking set of $PG(2,s)(s = p^n, p \text{ prime})$ where R contains exactly s points of the affine plane AG(2,s) obtained from PG(2,s) fixing a Rédei line l as line at infinity, and D_R is the set of directions determined by the set R. We can suppose that the affine point (0,0) belongs to R. Let e be the largest integer such that each line with slope in D_R meets R in a number of points which is a multiple of p^e . If either $p^e > 3$ or $p^e = 3$ and $N = p^n/3 + 1$, then there is a $GF(p^e)$ -linear map $f: GF(s) \mapsto GF(s)$ such that $B = B_f$ (see [1]).

A new class of k-blocking sets, called *linear*, has been introduced in [9] using normal spreads of projective finite spaces, proving that B_f is always a linear blocking set, and a class of examples of non-Rédei small minimal linear blocking sets of $PG(2, q^t)$ has been constructed in [11].

The aim of this paper is to point out the relationship between normal spreads and linear k-blocking sets. We prove that a k-blocking set of minimal size is linear when s is a square. Using the characterisation of linear k-blocking sets obtained in Section 4, we can prove that all the projections and all the embeddings of PG(kt,q) in $PG(r-1,q^t)$ $(r \ge k+2, kt > r-1)$ are linear k-blocking sets of $PG(r-1,q^t)$. Finally, we construct some new examples.

2. Normal spreads

Let PG(V,F) be the projective space defined by the lattice of the vector subspaces of the vector space V over the field F. Denote by the same symbol both a vector subspace of V and the element of PG(V,F) defined by it. We say that an element T of PG(V,F) has $rank\ t$ and $dimension\ t-1$ if T has dimension t as a vector space over F. If V has finite dimension n over F = GF(q), we write PG(n-1,q) instead of PG(V,F).

Let Σ^* be a projective space. A subset Σ of points of Σ^* is a *subgeometry* of Σ^* if there is a set \mathcal{L} of subsets of Σ with the following properties:

(1) each element of \mathcal{L} is contained in a line of Σ^* ;

- (2) (Σ, \mathcal{L}) is a projective space;
- (3) if a line l of Σ^* contains two points of Σ , then $l \cap \Sigma \in \mathcal{L}$;
- (4) no line of Σ^* belongs to \mathcal{L} .

Let $\Sigma = PG(V, GF(q)) = PG(n-1,q)$ be a subgeometry of $\Sigma^* = PG(V^*, GF(q^t)) = PG(n-1,q^t)$. We say that Σ is a *canonical* subgeometry of Σ^* when $V^* = GF(q^t) \otimes V$.

Let Σ be a canonical subgeometry of Σ^* . For each subspace S^* of Σ^* the set $S = S^* \cap \Sigma$ is a subspace of Σ whose rank is at most equal to the rank of S^* . We say that a subspace S of Σ^* is a subspace of Σ whenever S and S^* have the same rank. If σ is a semilinear collineation of Σ^* of order t fixing pointwise Σ , then S^* is a subspace of Σ if and only if S^* is fixed by σ .

Let V_1, V_2 be finite dimensional vector spaces over the field F, of dimension t and r respectively. The vector space $V = V_1 \otimes V_2$ has dimension rt. Let $\Sigma = PG(V, F) = PG(rt - 1, F)$. A Segre variety of type (t, r) is the set $S_{t,r} = \{a_1 \otimes a_2 \mid a_i \in V_i \setminus \{0\}(i=1,2)\}$. For each non-zero vector $a_i \in V_i$ (i=1,2) the vector subspaces $\langle a_1 \rangle \otimes V_2$ and $V_1 \otimes \langle a_2 \rangle$ define respectively a subspace of rank r and a subspace of rank t of PG(rt-1,q). Let $\mathcal{R} = \{V_1 \otimes \langle a_2 \rangle \mid a_2 \in V_2; a_2 \neq 0\}$ and $\mathcal{R}^* = \{\langle a_1 \rangle \otimes V_2 \mid a_1 \in V_1; a_1 \neq 0\}$. It is easy to prove that each point of $S_{t,r}$ belongs to exactly one element of \mathcal{R} and one element of \mathcal{R}^* . We call \mathcal{R} a (t-1)-regulus of PG(rt-1,F) and \mathcal{R}^* the set of the transversal subspaces of \mathcal{R} . If A is an element of \mathcal{R}^* and B is a k-dimensional subspace of A, then for each X of \mathcal{R} the set of points $X_B = \{Y \cap X \mid Y \in \mathcal{R}, Y \cap A \in B\}$ is a k-dimensional subspace of X.

If A_0, A_1, \dots, A_r are r+1 subspaces PG(rt-1,q) of dimension t-1 such that each r of them span PG(rt-1,q), then there is a unique (t-1)-regulus containing A_0, A_1, \dots, A_r .

The reader can see e.g. [5] for more details on Segre varieties.

A (t-1)-spread (t>1) of a projective space PG(n-1,q) is a family $\mathcal S$ of mutually disjoint subspaces of rank t such that each point of PG(n-1,q) belongs to an element of $\mathcal S$. It has been proved by Segre [12] that (t-1)-spreads of PG(n-1,q) exist if and only if n=rt.

Let r > 2. A (t-1)-spread S is said to be *normal* if it induces a spread in any subspace generated by two elements of S (i.e., if $T = \langle A, B \rangle$ with A, B in S, then an element of S is either disjoint from T or contained in T)¹.

Let $\Sigma = PG(rt-1,q)$ be a canonical subgeometry of $\Sigma^* = PG(rt-1,q^t)$ (t>1) and let σ be a semilinear collineation of Σ^* of order t which fixes Σ pointwise. There is a subspace $\Pi = PG(r-1,q^t)$ disjoint from Σ such that Σ^* is spanned by Π , Π^{σ} , ... $\Pi^{\sigma^{t-1}}$ and, for each point x of Π , $L(x) = \langle x^{\sigma^i} | i = 0, 1, 2, ..., t-1 \rangle$ is a subspace of Σ of rank t. Then it is easy

¹ This spreads are called *geometric* in [12].

to prove that $S = \{L(x) \mid x \in \Pi\}$ is a (t-1)-spread of PG(rt-1,q) (see, e.g, [12]). If m is a line of Π , then $S_m = \{L(x) \mid x \in m\}$ is a (t-1)-spread of the subspace $T_m = \langle m, m^{\sigma}, ..., m^{\sigma^{t-1}} \rangle$ of rank 2t. The (t-1)-spread S has the following property: if a subspace T of rank 2t of PG(rt-1,q) contains two elements of S, then there is a line m of Π such that $T = T_m$. Therefore, when r > 2, S is a normal spread of Σ , and by [12] all normal spreads of Σ can be constructed in this way.

A subset π of $\Pi = PG(r-1,q^t)$ is a canonical subgeometry of Π if and only if $\mathcal{R} = \{L(x) \mid x \in \pi\}$ is a (t-1)-regulus of Σ (see [12] or [7] Lemma 25.6.8).

Let \mathcal{L} be the set of all the subspaces of PG(rt-1,q) of rank 2t joining two elements of \mathcal{S} . Let $P(\mathcal{S})$ be the incidence structure, whose points and lines are respectively the elements of \mathcal{S} and the elements of \mathcal{L} , and whose incidence is the usual one of PG(rt-1,q). Then $P(\mathcal{S})$ is isomorphic to $\Pi = PG(r-1,q^t)$ via the isomorphism α defined by $x \mapsto L(x)$ and $m \mapsto T_m$ as remarked by R.C. Bose (see [4] or [12]).

Next we give a different construction for normal spreads.

Let V be an r-dimensional vector space over $GF(q^t)$, and let $\Pi = PG(r-1,q^t) = PG(V,GF(q^t))$. Regarding V as a vector space of dimension rt over GF(q), each point x of $PG(r-1,q^t)$ defines a (t-1)-dimensional subspace P(x) of the projective space PG(V,GF(q)) = PG(rt-1,q), and each line l of $PG(r-1,q^t)$ defines a (2t-1)-dimensional subspace P(l) of PG(rt-1,q).

Let **S** be the set of all the (t-1)-dimensional subspaces P(x) where x is a point of $PG(r-1,q^t)$. Then **S** is a (t-1)-spread of PG(rt-1,q). Moreover, if U is a (2t-1)-dimensional subspace of PG(rt-1,q) containing two elements of **S**, then a (t-1)-spread is induced by **S** in U, i.e. U = P(l) for some line l of $PG(r-1,q^t)$. This implies that **S** is a normal (t-1)-spread.

For each λ in $GF(q^t)$, let τ_{λ} be the collineation of $\Pi = PG(r-1,q^t)$ defined by the linear map of V to itself which maps $v \mapsto \lambda v$ for all vectors v of V. Note that τ_{λ} fixes all the points of Π . Also $G = \{\tau_{\lambda} : \lambda \in GF(q^t)\}$ defines a subgroup of PGL(rt,q) of order $(q^t-1)/(q-1)$, which fixes all the elements P(x) of \mathbf{S} and acts sharply transitively on the points of P(x). Moreover, Π is isomorphic to $P(\mathbf{S})$ via the isomorphism P defined by $x \mapsto P(x)$ and $l \mapsto P(l)$.

3. Linear k-blocking sets

Let S be a normal spread of $\Sigma = PG(rt-1,q), (t>1)$ and let $P(S) \simeq PG(r-1,q^t)$ be the (r-1)-dimensional projective space constructed using S. We recall that a (h-1)-dimensional subspace X of $PG(r-1,q^t)$ is represented

in P(S) by a (ht-1)-subspace T_X of Σ such that $S_X = \{L(x) \mid x \in X\}$ is a spread of T_X .

Theorem 1. Let k be a positive integer such that $r \ge k+1$, and let L be a kt-dimensional subspace of Σ . Define

$$\mathcal{B}_L = \{ A \in \mathcal{S} \mid A \cap L \neq \emptyset \}$$

If L is not contained in T_Y for all k-dimensional subspaces Y of $PG(r-1, q^t)$, then \mathcal{B}_L is a k-blocking set of $P(S) \simeq PG(r-1, q^t)$.

Proof. If X is a (r-k-1)- dimensional subspace of $PG(r-1,q^t)$, then T_X intersects L, i.e. there is an element of \mathcal{S}_X in \mathcal{B}_L . Hence all (r-k-1)-dimensional subspaces contain an element of \mathcal{B}_L .

Let Y be a k-dimensional subspace of $PG(r-1,q^t)$ and let \mathcal{S}_Y be the spread of T_Y induced by \mathcal{S} . Then \mathcal{S}_Y is contained in \mathcal{B}_L if and only if either L is contained in T_Y and all elements of \mathcal{S}_Y intersect L or $L \cap T_Y \neq L$ and L has at least a point in common with each element of \mathcal{S}_Y . If $L \cap T_Y$ is different from L, then $L \cap T_Y$ has dimension at most kt-1, and $|L \cap T_Y| \leq \frac{q^{kt}-1}{q-1}$. As \mathcal{S}_Y has order $\frac{q^{t(k+1)}-1}{q^t-1} > \frac{q^{kt}-1}{q-1}$, not all elements of \mathcal{S}_Y intersect L.

In the hypotheses of Theorem 1, we call \mathcal{B}_L a linear k-blocking set of $PG(r-1,q^t)$.

We remark that the subspace L is not uniquely defined by \mathcal{B}_L because $\mathcal{B}_L = \mathcal{B}_M$ with $M = L^{\tau}$ for each element τ of the group G. Thus, for each element A of \mathcal{B}_L , the subspaces $L \cap A$ and $M \cap A$ have the same dimension for all τ in G. In particular, if $L \cap A$ is a point for some element of \mathcal{B}_L , then there are $\frac{q^t-1}{q-1}$ subspaces of dimension kt defining the same linear k-blocking set. If each element of \mathcal{B}_L intersects L in a point, then $\mathcal{P} = \{L^{\tau} \mid \tau \in G\}$ is a partial spread because each point of an element of \mathcal{B}_L belongs to exactly one of the subspaces L^{τ} .

If l is a line of L and X and Y are two elements of \mathcal{B}_L incident with a point of l, then $\mathcal{R} = \{Z \in \mathcal{B}_L \mid Z \cap l \text{ is a point}\}$ is a (t-1)-regulus of the spread induced by \mathcal{S} on the (2t-1)-dimensional subspace $\langle X, Y \rangle$, whose transversals are the lines l^{τ} for τ in G.

Corollary 1. For k=r-2, the blocking set \mathcal{B}_L of $PG(r-1,q^t)$ is minimal.

Proof. If \mathcal{B}_L is not minimal, there is an element A = L(x) of \mathcal{B}_L such that for each line m of $\Pi = PG(r-1,q^t)$ incident with x the subspace T_m intersects an element B_m of \mathcal{B}_L different from A. Let a be a fixed point of $A \cap L$. If b_m is a point of B_m , let $l_m = \langle a, b_m \rangle$ be the line of L joining a and b_m . If $m' \neq m$,

then l_m and $l_{m'}$ are distinct because A is the intersection of T_m and $T_{m'}$. Thus we have $\frac{q^{t(r-1)}-1}{q^t-1}$ lines l_m . As L has dimension (r-2)t, the number of the lines of L incident with a point is $\frac{q^{t(r-2)}-1}{q^{-1}} < \frac{q^{t(r-1)}-1}{q^t-1}$. Hence we have a contradiction.

Corollary 2 ([9] Theorem 10). For each GF(q)-linear function f from $GF(q^t)$ to itself, the Rédei blocking set B_f of $PG(2, q^t)$ is linear.

It has been proved in [11] that there are linear blocking sets of $PG(2, q^t)$, t>3, which are not of Rédei type.

Corollary 3. Denote by $\mathcal{B}(U, B_0)$ the cone of $PG(r-1, q^t)$ with vertex the (k-2)-dimensional subspace U of $PG(r-1, q^t)$, t > 1, and base a blocking set B_0 in a plane E of $PG(r-1, q^t)$ disjoint from U. If B_0 is a linear blocking set of the plane E then $\mathcal{B}(U, B_0)$ is a linear k-blocking set of $PG(r-1, q^t)$.

Proof. Let $PG(r-1,q^t) = PG(V,GF(q^t))$ and let **S** be the GF(q)-linear representation of $PG(r-1,q^t)$ in PG(V,GF(q)) = PG(tr-1,q). Then U and E define respectively a (tk-t-1)-dimensional subspace T_U and a (3t-1)-dimensional subspace T_E of PG(tr-1,q).

If B_0 is a linear blocking set of E, then there is a t-dimensional subspace A of T_E such that $B_0 = \{x \mid L(x) \cap A \neq \emptyset\}$. Let L be the subspace of PG(tr-1,q) joining T_U and A. As U and E are disjoint, the subspaces T_U and E are skew. Then E has dimension E and E are E.

Let E_0 be a Baer subplane of $E = PG(2, q^2)$. As E_0 is a Rédei blocking set of $E = PG(2, q^2)$, E_0 is a linear blocking set of E by [1] and Corollary 2. Hence, $\mathcal{B}(U, E_0)$ is a linear k-blocking set of $PG(r-1, q^2)$.

4. Characterisation of linear k-blocking sets

Let \mathcal{S} be a normal spread of $\Sigma = PG(rt-1,q)$. Suppose that $\Sigma = PG(rt-1,q)$ is a canonical subgeometry of $\Sigma^* = PG(rt-1,q^t)$, and σ is the semilinear collineation of Σ^* which fixes Σ pointwise. Let $\Pi = PG(r-1,q^t)$ be a subspace disjoint from Σ such that Σ^* is spanned by Π , Π^{σ} , ... $\Pi^{\sigma^{t-1}}$ and $\mathcal{S} = \{L(x) \mid x \in \Pi\}$. If $\Pi = PG(V, GF(q^t))$, then we can suppose $\Sigma^* = \{(x_1, x_2^{\sigma}, \dots, x_t^{\sigma^{t-1}}) \mid x_1, x_2, \dots, x_t \in V\}$, and $\Sigma = \{(x, x^{\sigma}, \dots, x^{\sigma^{t-1}}) \mid x \in V\}$.

Suppose $r \ge k+2$. Let L be a kt-dimensional subspace of Σ which is not contained in T_Y for all k-dimensional subspaces Y of $\Pi = PG(r-1,q^t)$, i.e. \mathcal{B}_L is a linear k-blocking set. Denote by B_L the set of all the points x of Π

such that L(x) belongs to \mathcal{B}_L . By the isomorphism α between Π and $P(\mathcal{S})$ defined in §2, B_L is a k-blocking set of Π , which is also called *linear*. Note that $\alpha(B_L) = \mathcal{B}_L$.

- **Theorem 2.** Let $r \ge k+2$. There is a kt-dimensional subspace L of Σ which is not contained in T_Y for all k-dimensional subspaces Y of $\Pi = PG(r-1, q^t)$ if and only if there is a subset W of V, which is a (kt+1)-dimensional vector space over GF(q), such that:
- (a) a point of Π belongs to B_L if and only if it is defined by a vector of W,
- (b) W is not contained in any $GF(q^t)$ -vector subspace of V of dimension k+1 over $GF(q^t)$.

Proof. Let $W = \{x \in V \mid (x, x^{\sigma}, \dots, x^{\sigma^{t-1}}) \in L\}$. If x and y belong to W and λ is in GF(q) then both x+y and λx belong to W. This is equivalent to saying that W is a (kt+1)-dimensional vector space over GF(q). Therefore L is a kt-dimensional subspace of Σ if and only if there is a GF(q)-vector subspace W of V of dimension kt+1 such that $L = \{(x, x^{\sigma}, \dots, x^{\sigma^{t-1}}) \mid x \in W\}$.

By definition a point y of Π belongs to B_L if and only if L(y) belongs to \mathcal{B}_L if and only if $(x, x^{\sigma}, \dots, x^{\sigma^{t-1}}) \in L$ with $x = \mu y$ for some $\mu \in GF(q^t)$ and $x \in W$ if and only if the point y of Π is defined by a vector of W.

Moreover W is contained in a $GF(q^t)$ -vector space of V of dimension k+1 over $GF(q^t)$ if and only if B_L is contained in a k-dimensional subspace Y of Π if and only if L is contained in T_Y .

In the hypothesis of Theorem 2, a point of B_L can be defined by different vectors of W. In particular if $\Pi = PG(2, q^t)$ is a plane, then a linear blocking set of Π is defined by a (t+1)-dimensional GF(q)-vector space of V.

Corollary 4. A canonical subgeometry of $PG(kt, q^t)$ is a linear k-blocking set. If r = kt + 1, then a linear k-blocking set B of $PG(r - 1, q^t)$ is a canonical subgeometry if and only if $\langle B \rangle = PG(r - 1, q^t)$.

Proof. If $\Sigma = PG(W, GF(q))$ is a canonical subgeometry of $PG(kt, q^t) = PG(V, GF(q^t))$ then Σ is a linear k-blocking set by Theorem 2.

If B is a linear k-blocking set of $PG(kt,q^t)$, let W be the GF(q)- vector space of dimension kt+1 associated with B. As W has dimension kt+1 and $\langle B \rangle = PG(kt,q^t)$ a basis of W is also a basis of V, i.e. B is a canonical subgeometry of $PG(kt,q^t)$.

5. Projections and embeddings

Let $\Sigma = PG(m,q)$ be a canonical subgeometry of $\Sigma^* = PG(m,q^t)$. Suppose there is a (m-r)-dimensional subspace Λ^* of Σ^* disjoint from Σ . Let Λ be an (r-1)-dimensional subspace of Σ^* disjoint from Λ^* , and let $\Gamma = \{x \text{ is a point of } \Lambda \mid \exists y \in \Sigma : x = \langle \Lambda^*, y \rangle \cap \Lambda \}$ be the projection of Σ from Λ^* to $\Lambda = PG(r-1,q^t)$. If each line of Σ is disjoint from Λ^* , we call Γ an embedding of PG(m,q) in Λ . Let $p_{\Lambda^*,\Lambda,\Sigma}$ be the map from Σ on Γ defined by $x \mapsto \langle \Lambda^*, x \rangle \cap \Lambda$ for each point x of Σ .

Lemma 1. The map $p_{\Lambda^*,\Lambda,\Sigma}$ is a bijection if and only if Γ is an embedding of $\Sigma = PG(m,q)$ in Λ . No proper subspace of Λ contains Γ .

Proof. By defintion $p_{\Lambda^*,\Lambda,\Sigma}$ is surjective. If x and y are distinct points of Σ , then $p_{\Lambda^*,\Lambda,\Sigma}(x) = p_{\Lambda^*,\Lambda,\Sigma}(y) = z$ if and only if the subspace $\langle \Lambda^*,z \rangle$ contains x and y. This is equivalent to say that the line joining x and y intersects Λ^* .

If Γ is contained in a hyperplane H of Λ , then Σ is contained in the hyperplane $\langle \Lambda^*, H \rangle$ of Σ^* . As Σ is a canonical subgeometry of Σ^* , this is impossible.

Let $\Sigma^* = PG(V^*, GF(q^t))$ and $\Sigma = PG(V, GF(q))$ with $V^* = GF(q^t) \otimes V$. Denote by X and Y the vector subspaces of V^* which define respectively Λ^* and Λ . Note that $dim_{GF(q)}X \oplus V = (m-r+1)t+m+1$ and $dim_{GF(q)}Y = rt$. Therefore, $W = Y \cap (X \oplus V)$ is a GF(q)-subspace of dimension m+1 of Y, and the points of Γ are defined by the vectors of W.

Theorem 3. If Γ is a projection of PG(m,q) in $\Lambda = PG(r-1,q^t)$ (t>1) and m=kt, with $r \ge k+2, k>0$, then Γ is a linear k-blocking set of Λ . When Γ is an embedding of PG(m,q) in $\Lambda = PG(r-1,q^t)$, Γ has size $q^{kt}+q^{kt-1}+\cdots+q+1$ and does not contain any line of Λ .

Proof. Any (r-k-1)-dimensional subspace of Λ contains a point of Γ because it is defined by a $GF(q^t)$ -vector subspace of Y of dimension r-k over $GF(q^t)$ and W has dimension kt+1 over GF(q).

Suppose that a k-subspace M of Λ is contained in Γ . As $\langle \Lambda^*, M \rangle \cap \Sigma$ is a subspace of Σ , it contains $\frac{q^{h+1}-1}{q-1}$ points, where h is the dimension of $\langle \Lambda^*, m \rangle \cap \Sigma$. The number of points of $\langle \Lambda^*, M \rangle \cap \Sigma$ is greater than or equal to the number of point of its projection $\langle \Lambda^*, M \rangle \cap \Gamma = M$; i.e., $\frac{q^{h+1}-1}{q-1} \geq \frac{(q^t)^{k+1}-1}{q^t-1}$. This implies h > tk because t > 1. As the dimension of Σ is kt and h is the dimension of a subspace of Σ , we have a contradiction.

Suppose Γ be an embedding. As no line of Σ intersects Λ^* , Γ contains $q^{kt}+q^{kt-1}+\cdots+q+1$ points.

Suppose that a line m of Λ is contained in Γ . Then $\langle \Lambda^*, m \rangle$ intersects Σ in exactly q^t+1 points because the map $p_{\Lambda^*,\Lambda,\Sigma}$ is a bijection. As $\langle \Lambda^*,m \rangle \cap \Sigma$ is a subspace of Σ , it contains $\frac{q^{h+1}-1}{q-1}$ points where h is the dimension of $\langle \Lambda^*,m \rangle \cap \Sigma$. As the map $p_{\Lambda^*,\Lambda,\Sigma}$ from Σ into Γ is a bijection, it must be $\frac{q^{h+1}-1}{q-1}=q^t+1$. As this is impossible, we have a contradiction. Therefore no line of Λ is contained in Γ .

We remark that if all the planes of Σ are disjoint from Λ^* , then Γ is a subgeometry of Λ and, by [8], all subgeometries of Λ isomorphic to PG(m,q) can be constructed in this way. In [10], we have proved that any linear k-blocking set not contained in a hyperplane is some projection.

We conclude this section with an example of 1-blocking set defined by an embedding.

Let $\Sigma^* = PG(t,q^t)$, t > 2, and let (x_0,x_1,x_2,\cdots,x_t) be the homogeneous coordinates of a point of Σ^* . If σ is the collineation of Σ^* defined by σ : $(x_0,x_1,x_2,\cdots,x_t)\mapsto (x_0^q,x_t^q,x_1^q,\ldots,x_{t-1}^q)$, then $\Sigma=\{(\alpha,x,x^q,\ldots,x^{q^{t-1}})\mid \alpha\in GF(q),x\in GF(q^t)\}$ is a canonical subgeometry of Σ^* fixed pointwise by σ . The point $(0,1,0,\ldots,0)$ of Σ^* cannot be contained in a subspace U of Σ of dimension h < t-1 because $U^\sigma = U$ implies $(0,1,0,\ldots,0)^{\sigma^i} \in U$ for $i=0,1,\ldots,t-1$ (i.e. U is the hyperplane with equation $x_0=0$). If Λ is the hyperplane of Σ^* of equation $x_1=0$, the projection of Σ from the point $(0,1,0,\ldots,0)$ on Λ is

$$\Gamma = \{(\alpha, 0, x^q, \dots, x^{q^{t-1}}) \mid \alpha \in GF(q), x \in GF(q^t)\}.$$

Then Γ is a 1-blocking set of $\Lambda = PG(t-1,q^t)$ by Theorem 2.

For t=3 the line $x_0=x_1=0$ of $\Lambda=PG(2,q^3)$ is a Rédei line of Γ containing q^2+q+1 points of Γ .

If t > 3, then Γ is a subgeometry of $\Lambda = PG(t-1,q^t)$ and a line of Λ contains 0, 1 or q+1 points of Γ .

6. An example of k-blocking set

In this section we always suppose t and k are two positive integers such that $t \ge 3$ and $r = k(t-1) \ge 3$.

Let $\Sigma = PG(kt-1,q)$ be a canonical subgeometry of $\Sigma^* = PG(kt-1,q^t)$, and let σ be the semilinear collineation of Σ^* which fixes Σ pointwise. Let $\Pi = PG(k-1,q^t)$ be a subspace disjoint from Σ such that Σ^* is spanned by $\Pi, \Pi^{\sigma}, \ldots \Pi^{\sigma^{t-1}}$ and such that for each point x of $\Pi, L(x) = \langle x^{\sigma^i} | i = 0, 1, 2, \ldots, t-1 \rangle$ is a subspace of Σ of rank t.

Then no line of Σ intersects $\Pi = \Lambda^*$. Let $\Lambda = \langle \Pi^{\sigma^i} \mid i = 1, 2, \dots, t-1 \rangle = PG(r-1,q^t)$ and let Γ be the projection of Σ from Λ^* into Λ . As Γ is an embedding of $\Sigma = PG(kt-1,q)$, it contains $\frac{q^{kt}-1}{q-1}$ points and it is not contained in a hyperplane of Λ .

Let **S** be the GF(q)-linear representation of $\Lambda = PG(Y, GF(q^t)) = PG(r-1,q^t)$ in PG(Y,GF(q)) = PG(rt-1,q). As the embedding Γ is defined by a GF(q)-vector subspace of Y of dimension kt over GF(q), it defines a (kt-1)-dimensional subspace M of PG(rt-1,q) such that for each point x of Γ the element P(x) of **S** intersects M in exactly a point.

Theorem 4. Let u be a fixed point of Γ , $y = P(u) \cap M$ and let z be a fixed point of P(u) different from y. If L is the kt-dimensional subspace joining M and z, then \mathcal{B}_L is a k-blocking set of $P(\mathbf{S}) = PG(r-1,q^t)$ which is not contained in a hyperplane.

If t > 3, then any line of $P(\mathbf{S})$ contains at most $q^2 + q + 1$ elements of \mathcal{B}_L , i.e. \mathcal{B}_L does not contain any line of $P(\mathbf{S})$. Moreover, \mathcal{B}_L has order $q^{kt} + q^{kt-1} + \cdots + q^2 + 1$.

If k = 1 and t = 4 then \mathcal{B}_L is a non-Rédei blocking set of the plane $PG(2, q^4)$ containing a subgeometry isomorphic to PG(3, q).

Proof. If there is a hyperplane H of Λ such that $B_L = \{x \mid P(x) \in \mathcal{B}_L\} \subset H$, then Γ is contained in H. As this is impossible, \mathcal{B}_L is not contained in the hyperplane $\mathbf{S}_H = \{P(x) \mid x \in H\}$ of $P(\mathbf{S})$.

If B_L contains a k-subspace U of Λ , then Γ is contained in U. As Γ is an embedding, this is impossible by Lemma 1. By Theorem 1 we have proved that \mathcal{B}_L is a k-blocking set.

Let t > 3. In this case Γ is a subgeometry of Λ because no plane of Σ intersects Π . Therefore a line m of Λ contains at most q+1 point of Γ . If T_m is the GF(q)-linear representation of m, then $T_m \cap M$ is at most a line because each element P(x) of \mathbf{S} with $x \in \Gamma$ have exactly a point in common with M. As M is a hyperplane of L, we have that $L \cap T_m$ is at most a plane. Moreover, $|\mathbf{S}_m \cap \mathcal{B}_L| \leq q^2 + q + 1$. As $|\mathbf{S}_m| = q^t + 1 > q^2 + q + 1$, no line is contained in \mathcal{B}_L .

Let N be a fixed hyperplane of M not incident with the point $y \in P(u)$. If $x \in P(a)$ $(a \neq u)$ is a point of N then the plane $\langle x, y, z \rangle$ of L is contained in the subspace T_m where m is the line of Λ joining the points u and a. As P(u) intersects $\langle x, y, z \rangle$ in the line $\langle y, z \rangle$ each point of $\langle x, y, z \rangle$ not in $\langle y, z \rangle$ belongs to exactly one element of \mathbf{S}_m , i.e. there are exactly q^2+1 elements of \mathbf{S}_m containing a point of $\langle x, y, z \rangle$. As Γ is a subgeometry, $T_m \cap M$ is at most a line and $T_m \cap L = \langle x, y, z \rangle$, i.e. T_m contains exactly q^2+1 elements of \mathcal{B}_L .

If w is a point of N different from x belonging to P(b), the line $n = \langle u, b \rangle$ of Λ intersects m in u. Therefore P(u) is the unique element of \mathcal{B}_L incident with a point of $\langle x, y, z \rangle$ and with a point of $\langle w, y, z \rangle$.

As we have $q^{kt-2} + q^{kt-3} + \cdots + q + 1$ planes of type $\langle x, y, z \rangle$ where x is a point of N, the order of \mathcal{B}_L is $q^{kt} + q^{kt-1} + \cdots + q^3 + q^2 + 1$.

If k = 1 and t = 4, then r = 3 and \mathcal{B}_L is a blocking set of the plane $P(\mathbf{S}) = PG(2, q^4)$ of order $q^4 + q^3 + q^2 + 1$ such that no line of $P(\mathbf{S})$ contains $q^3 + q^2 + 1$ points of \mathcal{B}_L .

Note that the non-Rédei blocking set of $PG(2, q^4)$ constructed in Theorem 4 is one of the examples constructed in [11]. Also, for k=2 and t=3, we have constructed a blocking set of $PG(3, q^3)$.

References

- [1] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme, T. Szőnyi: On the number of slopes of the graph of a function defined on a finite field, *J. Comb. Theory Ser. A*, **86** (1999), 187–196.
- [2] A. BEUTELSPACHER: Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata, 9 (1980), 425–449.
- [3] A. E. BROUWER and H. A. WILBRINK: Blocking sets in translation planes, J. Geom., 19 (1982), 200.
- [4] R. H. Bruck: Construction Problems in Finite Projective Spaces, Combinatorial Mathematics and its Applications, Chapell Hill, 1969, 426–514.
- [5] W. Burau: Mehrdimensionale projective und höhere Geometrie, Berlin, 1961.
- [6] U. Heim: On t-blocking sets in projective spaces, preprint.
- [7] J. W. P. Hirschfeld and J. A. Thas: General Galois Geometries. Clarendon Press— Oxford 1991.
- [8] M. LIMBOS: A characterisation of the embeddings of PG(m,q) into $PG(n,q^r)$, J. Geom., 16 (1981), 50–55.
- [9] G. LUNARDON: Normal spreads. Geom. Dedicata, 75 (1999), 245–261.
- [10] G. LUNARDON, P. POLITO and O. POLVERINO: A geometric characterisation of linear k-blocking sets, submitted.
- [11] P. POLITO and O. POLVERINO: On small blocking sets, Combinatorica, 18 (1998), 133–137.
- [12] B. SEGRE: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1–76.
- [13] T. Szőnyi: Polinomi lacunosi, Summer school in Combinatorics, Potenza 1995.

Guglielmo Lunardon

Dipartimento di Matematica e Applicazioni Università degli Studi di Napoli "Federico II" Complesso di Monte S. Angelo-Edificio T V. Cintia I-80126 Napoli, Italy lunardon@.unina.il